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Abstract. A lattice calculation shows that the Casimir scaling hypothesis is well verified in QCD, that is to
say that the potential between two opposite colour charges in a colour singlet is proportional to the value
of the quadratic Casimir operator. On the other hand, in a bag model calculation for the same system, a
scaling of the string tension with the square root of the quadratic Casimir operator is obtained. It is shown
that, within the same formalism but with the assumption that the width of the string is independent of
the colour charges, the string tension is proportional to value of the quadratic Casimir operator. Some
considerations about the colour behaviour of the total interaction are given.

PACS. 12.39.Pn Potential models – 12.39.Ba Bag model – 12.38.Aw General properties of QCD (dynamics,
confinement, etc.)

The Casimir scaling hypothesis means that the poten-
tial between two opposite colour charges in a colour singlet
is proportional to the value of the quadratic Casimir op-
erator. A lattice calculation [1] excludes any violations of
this hypothesis that exceed 5% for charge separations of
up to 1 fm. Nevertheless, other models do not predict such
a colour behaviour. For instance, a scaling of the string
tension with the square root of the quadratic Casimir op-
erator is obtained in a bag model calculation [2]. We show
here that the Casimir scaling can be obtained if the fun-
damental assumption in the bag model, the existence of a
confining pressure B, is replaced by the hypothesis of the
existence of a universal string section in the rest frame of
the charges.

We use the same formalism as in ref. [2]. Let us con-
sider two opposite colour charges with zero mass, moving
attached by a string, in a colour singlet. The colour electric
flux Ea which leaves a colour charge has the strength

|Ea|A = gλa, (1)

where A is the cross-section of the string, and λa are the
colour matrices. If x is the distance from the centre of
mass (middle of the string), a point of the string moves
with the speed

v =
2

L
x, (2)
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where L is the length of the string. The colour charges
at the extremities move at the speed of light. The colour
magnetic field, which is produced by the rotation of the
colour electric field, is given by

Ba = v ×Ea, (3)

at a point of the string which moves with velocity v. The
quadratic Casimir operator C is

C =
1

4

∑

a

λ2

a. (4)

In ref. [2], the section of the string is determined by
the surface equation of the bag containing the coloured
particles. This implies that its section A is proportional to√
C. In this work, we assume that the section of the string

is a constant A0, independent of C, in the rest frame of the
string. Consequently, our model is not a bag model, and
no confining pressure B is introduced. When the string
rotates, the section undergoes a Lorentz contraction

A = A0

√

1− v2. (5)

To calculate the mass M of the colour singlet system,
let us first compute the strength fields

∑

a

E2

a =
4g2C

A2
and

∑

a

B2

a =
4g2C

A2
v2, (6)
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the speed v of a point of the string being always perpen-
dicular to Ea. All volume integrals are replaced by

∫

d3x→ 2

∫ L/2

0

Adx = L

∫

1

0

Adv. (7)

The energy of the coloured flux lines is [2]

Ef =
1

2

∫

d3x
∑

a

(

E2

a +B2

a

)

. (8)

With the notations defined above, we obtain

Ef = 2g2C
L

A0

∫

1

0

1 + v2

√
1− v2

dv. (9)

The angular momentum of the coloured flux lines is [2]

Jf =

∫

d3x
∑

a

r × (Ea ×Ba) . (10)

Thus, we obtain

Jf = 2g2C
L2

A0

∫

1

0

v2

√
1− v2

dv. (11)

Classically, a massless colour charge carries neither energy
nor momentum [3]. Consequently, the massM of the state
is equal to Ef and the total angular momentum J is equal
to Jf . We then obtain

M2 =
9π

2

g2

A0

C J = 18π2
αS

A0

C J, (12)

with αS = g2/4π the strong coupling constant. Let us note
that, in ref. [2], the mass is determined from the condition
∂M/∂L = 0. But this implies also that the contributions
of the massless colour charges to energy and momentum
are vanishing.

We obtain the linear Regge trajectories, but with a
slope —that is to say a string tension— proportional to
C, and not to

√
C. This result has already been obtained

in ref. [4], but with a different technique. With the more
phenomenological approach used here, we find that the
energy density of the flux tube is given by

M

L
= 6π2

αS C

A0

, (13)

which is quite different from the result of ref. [4].
In order to check the relevance of formula (12), let us

consider the case of a meson, for which C = 4/3. The
relativistic flux tube model [3] predicts that

M2 = 2πa J, (14)

where a is the usual string tension. It is then possible to
link the section A0 of the string to its tension a and the

strong coupling constant αS

A0 = 12π
αS

a
. (15)

The radius R0 of the string is given by
√

A0/π, assum-
ing a cylindrical form for the string. For reasonable val-
ues of the QCD parameters, αS ∈ [0.1–0.4] and a ∈
[0.17–0.20] GeV2, we find R0 in the range 0.5–1.0 fm [4]. A
lattice calculation predicts a Gaussian string width with
a mean radius around 0.35 fm [5]. Given the simplicity of
our model, the agreement is quite reasonable.

We can expect that our model is relevant only if L >
2R0. This condition is satisfied if

J > 8πCαS . (16)

Small values for J are acceptable if the product CαS is
not too large.

The key ingredient of this work is the assumption
that the width of the string is independent of the colour
charges. Such a possibility is also studied in recent
works [6,7]. It could be interesting to test this hypoth-
esis with lattice calculations.

Besides the confinement, a one-gluon exchange process
exists between the two particles. The colour dependence
of this interaction is given by

1

4

∑

a

λa(1)λa(2) =
1

2
(0− C − C) = −C. (17)

So we find again a colour scaling given by C. A con-
stant potential plays an important role in the hadron spec-
troscopy. In various approaches [8,9], this constant is pro-
portional to the string tension. In this case the colour scal-
ing is also given by C. Finally, we can expect that the total
potential between two opposite colour charges in a colour
singlet is proportional to the quadratic Casimir operator,
and not to its square root.
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